Понятия со словосочетанием «модальная логика»
Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы).
Связанные понятия
Теория вычислимости, также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Топологическая семантика является естественной семантикой для неклассических логик, таких как интуиционистская логика и модальная логика. Исторически топологическая семантика появилась раньше более распространенной на данной момент семантики Крипке. Основы топологической семантики были заложены в работах Куратовского.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Метатеория — теория, анализирующая методы и свойства другой теории, так называемой предметной или объектной теории.
Филосо́фия матема́тики — раздел философии науки, исследующий философские основания и проблемы математики: онтологические, гносеологические, методологические, логические и аксиологические предпосылки и принципы математики в целом, её различных направлений, дисциплин и теорий. В широком смысле философия математики занимается построением семантической теории «языка» математики для изучения смысла математических высказываний и сущности абстрактных объектов.
Поскольку философия состоит из рациональных рассуждений, логика является первичным атрибутом философии. Для анализа различных философских концепций, для их сопоставления друг с другом необходимо проведение критического анализа различных философских утверждений и теорий. В связи с тем, что человеческое мышление формулируется текстуально, логика тесно связана с анализом текстов и языков. Логика формализует текстуальное рассуждение и определяет его формы, которые приемлемы для анализа. Первым шагом...
Подробнее: Философская логика
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
Классическая логика — термин, используемый в математической логике по отношению к той или иной логической системе, для указания того, что для данной логики справедливы все законы (классического) исчисления высказываний, в том числе закон исключения третьего.
Семантика Крипке является распространенной семантикой для неклассических логик, таких как интуиционистская логика и модальная логика. Она была создана Солом Крипке в конце 1950-х — начале 1960-х годов. Это было большим достижением для развития теории моделей для неклассических логик.
Реляционное исчисление — прикладная ветвь формальной теории, носящей название «исчисления предикатов первого порядка». В основе исчисления лежит понятие переменной с определенной для неё областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. Наряду с реляционной алгеброй является способом получения результирующего отношения в реляционной модели данных. В зависимости от того, что является областью определения переменной, различают...
Логици́зм — одно из основных направлений обоснования математики и философии математики, ставящее целью сведе́ние исходных математических понятий к понятиям логики. Двумя другими основными направлениями являются интуиционизм и формализм.
Фикционализм математический — представление о математическое понятиях и теориях, как о логических фикциях, не имеющих отношения к структуре реальности. Математический фикционализм представлен двумя основными разновидностями. Первую форму фикционализма в математике как основную характеристику некоторых математических понятий, не имеющих реального значения, но полезных для объяснения связей между числами и простыми функциями, дал Лейбниц (для понятия бесконечно малой величины). Как операционный метод...
Незави́симость систе́мы аксио́м ― свойство системы аксиом данной аксиоматической теории, состоящее в том, что каждая аксиома является независимой, то есть не является логическим следствием из множества остальных аксиом этой теории. Система аксиом, обладающая этим свойством, называется независимой.
Метод обобщений (математика) — метод математического творчества, в котором в процессе формирования математического понятия более широкого объёма отбрасываются все второстепенные данные и акцентируется внимание на основных фактах. Этот метод...
Интуициони́стское исчисле́ние выска́зываний, называемое иногда Интуициони́стской ло́гикой — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930.
Формализа́ция — представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Форма́льные нау́ки — совокупность наук, занимающихся исследованием формальных систем. К формальным наукам относятся: математика, логика, кибернетика, теоретическая информатика, теория информации, теория систем, теория принятия решений, статистика, некоторые аспекты лингвистики.
Топологическая рефлексия — метод современной философии, учитывающий нелинейный, но непрерывный (топологический) характер современного мышления (рефлексии). Термин введен и обоснован петербургским философом Савчуком в 2003 годудля того чтобы противопоставить современное мышление классическому, которое в этом контексте именуется оптической рефлексией, что указывает на связь с эпохой Просвещения и предшествующим ему картезианством. Если оптическая рефлексия постулирует идеал бестелесного взгляда с позиции...
Теория среднего уровня (англ. middle-range theory) состоит из проверяемых обобщений, соединяющих теорию с практикой. Идея заключается в том, что необходимо разрабатывать теории, исходя из ограниченных социальных явлений. Эти теории строятся как обобщённые, связанные в логическую систему, высказывания, они должны строиться в соответствии с эмпирическими исследованиями, проверяться на практике. Термин был введён американским социологом Мертоном в 1947 году. Если сам Мертон первоначально под теориями...
В теории множеств, разделе математики, урэлемент или ур-элемент (от немецкой приставки ur- обозначающей «изначальный» или «исходный») — это объект (конкретный или абстрактный), который не является множеством, но который может быть элементом множества. Урэлементы иногда называются «атомами».
Подробнее: Урэлемент
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Вероятностная логика — логика, в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике, а непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица — практически достоверному. Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения.
Форма́льная ло́гика — наука о правилах преобразования высказываний, сохраняющих их истинностное значение безотносительно к содержанию входящих в эти высказывания понятий, а также конструирование этих правил. Будучи основателем формальной логики как науки, Аристотель называл её «аналитика», термин же «логика» прочно вошёл в обиход уже после его смерти в III веке до нашей эры.
Конвенционали́зм (от лат. conventio — договор, соглашение) — философская концепция, согласно которой научные понятия и теоретические построения являются в основе своей продуктами соглашения между учёными. Они должны быть внутренне непротиворечивы и соответствовать данным наблюдения, но не имеет смысла требовать от них, чтобы они отражали истинное устройство мира. Следовательно, все непротиворечивые научные (а также философские) теории в равной степени приемлемы и ни одна из них не может быть признана...
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Порожда́ющая грамма́тика (генеративная грамматика, англ. generative grammar) — формализм генеративной лингвистики, связанный с изучением синтаксиса. В рамках подхода порождающей грамматики формулируется система правил, при помощи которых можно определить, какая комбинация слов оформляет грамматически правильное предложение. Термин введён в научный оборот в работах Ноама Хомского в конце 1950-х годов (в ранних версиях теории Хомского использовался термин трансформационная грамматика, англ. transformational...
Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Логическая семантика — «Философский термин» — («рассуждение», «мысль», «разум») — раздел логики, в котором изучаются отношения языковых символов к обозначаемым ими объектам и выражаемому ими содержанию.
Универсальная алгебраическая геометрия (другое название — алгебраическая геометрия над алгебраическими системами) — направление в математике, изучающее связи между элементами алгебраической системы, выражаемые на языке алгебраических уравнений над алгебраическими системами. Классическая алгебраическая геометрия — это конкретный пример алгебраической геометрии над алгебраическими системами для случая алгебраического поля, в универсальном случае используется инструментарий универсальной алгебры для...
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Элемента́рный то́пос — категория, в некотором смысле похожая на категорию множеств, основной предмет изучения теории топосов. Средствами элементарных топосов может быть описана аксиоматика как самой теории множеств, так и альтернативных теорий и логик, например, интуиционистская логика.
Финитизм (лат. finitus — определенный, законченный) — философское учение, отрицающее понятие бесконечного и утверждающее, что бесконечность не имеет места ни во вселенной, ни в микромире, ни в человеческом мышлении. Была широко популярна в Древнем мире и Средних веках до Коперника. Финитизм предполагает, что Вселенная конечна и имеет определённые размеры. Микромир также имеет пределы делимости (см. атомизм).
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Логика высказываний, или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Гармони́ческий ана́лиз (или фурье́-ана́лиз) — раздел математического анализа, в котором изучаются свойства функций с помощью представления их в виде рядов или интегралов Фурье. Также метод решения задач с помощью представления функций в виде рядов или интегралов Фурье.
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Интерполяция линейных операторов — направление функционального анализа. рассматривающее банаховы пространства как элементы некоторой категории. Общая теория интерполяции линейных операторов была разработана, начиная с 1958 года, в работах С. Г. Крейна, Ж.-Л. Лионса, Ж. Петре. Имеет многочисленные приложения в теории рядов Фурье, в теории приближений, в теории уравнений в частных производных.
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Те́зис Чёрча — Тью́ринга — это гипотеза, постулирующая эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции и функции, вычислимой на машине Тьюринга. В связи с интуитивностью исходного понятия алгоритмической вычислимости, данный тезис носит характер суждения об этом понятии и его невозможно строго доказать или опровергнуть. Перед точным определением вычислимой функции математики часто использовали неофициальный термин...
Синтаксис (в логике) (логический синтаксис) — раздел формальной логики, изучающий правильность построения выражений, безотносительно к тому, есть ли у этих выражений логические значения и если есть, то какие именно.